Quantum mysteries dissolve if possibilities are realities

When you think about it, it shouldn’t be surprising that there’s more than one way to explain quantum mechanics. Quantum math is notorious for incorporating multiple possibilities for the outcomes of measurements. So you shouldn’t expect physicists to stick to only one explanation for what that math means. And in fact, sometimes it seems like researchers have proposed more “interpretations” of this math than Katy Perry has followers on Twitter.

So it would seem that the world needs more quantum interpretations like it needs more Category 5 hurricanes. But until some single interpretation comes along that makes everybody happy (and that’s about as likely as the Cleveland Browns winning the Super Bowl), yet more interpretations will emerge. One of the latest appeared recently (September 13) online at arXiv.org, the site where physicists send their papers to ripen before actual publication. You might say papers on the arXiv are like “potential publications,” which someday might become “actual” if a journal prints them.

And that, in a nutshell, is pretty much the same as the logic underlying the new interpretation of quantum physics. In the new paper, three scientists argue that including “potential” things on the list of “real” things can avoid the counterintuitive conundrums that quantum physics poses. It is perhaps less of a full-blown interpretation than a new philosophical framework for contemplating those quantum mysteries. At its root, the new idea holds that the common conception of “reality” is too limited. By expanding the definition of reality, the quantum’s mysteries disappear. In particular, “real” should not be restricted to “actual” objects or events in spacetime. Reality ought also be assigned to certain possibilities, or “potential” realities, that have not yet become “actual.” These potential realities do not exist in spacetime, but nevertheless are “ontological” — that is, real components of existence.

“This new ontological picture requires that we expand our concept of ‘what is real’ to include an extraspatiotemporal domain of quantum possibility,” write Ruth Kastner, Stuart Kauffman and Michael Epperson.

Considering potential things to be real is not exactly a new idea, as it was a central aspect of the philosophy of Aristotle, 24 centuries ago. An acorn has the potential to become a tree; a tree has the potential to become a wooden table. Even applying this idea to quantum physics isn’t new. Werner Heisenberg, the quantum pioneer famous for his uncertainty principle, considered his quantum math to describe potential outcomes of measurements of which one would become the actual result. The quantum concept of a “probability wave,” describing the likelihood of different possible outcomes of a measurement, was a quantitative version of Aristotle’s potential, Heisenberg wrote in his well-known 1958 book Physics and Philosophy. “It introduced something standing in the middle between the idea of an event and the actual event, a strange kind of physical reality just in the middle between possibility and reality.”

In their paper, titled “Taking Heisenberg’s Potentia Seriously,” Kastner and colleagues elaborate on this idea, drawing a parallel to the philosophy of René Descartes. Descartes, in the 17th century, proposed a strict division between material and mental “substance.” Material stuff (res extensa, or extended things) existed entirely independently of mental reality (res cogitans, things that think) except in the brain’s pineal gland. There res cogitans could influence the body. Modern science has, of course, rejected res cogitans: The material world is all that reality requires. Mental activity is the outcome of material processes, such as electrical impulses and biochemical interactions.

Kastner and colleagues also reject Descartes’ res cogitans. But they think reality should not be restricted to res extensa; rather it should be complemented by “res potentia” — in particular, quantum res potentia, not just any old list of possibilities. Quantum potentia can be quantitatively defined; a quantum measurement will, with certainty, always produce one of the possibilities it describes. In the large-scale world, all sorts of possibilities can be imagined (Browns win Super Bowl, Indians win 22 straight games) which may or may not ever come to pass.

If quantum potentia are in some sense real, Kastner and colleagues say, then the mysterious weirdness of quantum mechanics becomes instantly explicable. You just have to realize that changes in actual things reset the list of potential things.

Consider for instance that you and I agree to meet for lunch next Tuesday at the Mad Hatter restaurant (Kastner and colleagues use the example of a coffee shop, but I don’t like coffee). But then on Monday, a tornado blasts the Mad Hatter to Wonderland. Meeting there is no longer on the list of res potentia; it’s no longer possible for lunch there to become an actuality. In other words, even though an actuality can’t alter a distant actuality, it can change distant potential. We could have been a thousand miles away, yet the tornado changed our possibilities for places to eat.

It’s an example of how the list of potentia can change without the spooky action at a distance that Einstein alleged about quantum entanglement. Measurements on entangled particles, such as two photons, seem baffling. You can set up an experiment so that before a measurement is made, either photon could be spinning clockwise or counterclockwise. Once one is measured, though (and found to be, say, clockwise), you know the other will have the opposite spin (counterclockwise), no matter how far away it is. But no secret signal is (or could possibly be) sent from one photon to the other after the first measurement. It’s simply the case that counterclockwise is no longer on the list of res potentia for the second photon. An “actuality” (the first measurement) changes the list of potentia that still exist in the universe. Potentia encompass the list of things that may become actual; what becomes actual then changes what’s on the list of potentia.

Similar arguments apply to other quantum mysteries. Observations of a “pure” quantum state, containing many possibilities, turns one of those possibilities into an actual one. And the new actual event constrains the list of future possibilities, without any need for physical causation. “We simply allow that actual events can instantaneously and acausally affect what is next possible … which, in turn, influences what can next become actual, and so on,” Kastner and colleagues write.

Measurement, they say, is simply a real physical process that transforms quantum potentia into elements of res extensa — actual, real stuff in the ordinary sense. Space and time, or spacetime, is something that “emerges from a quantum substratum,” as actual stuff crystalizes out “of a more fluid domain of possibles.” Spacetime, therefore, is not all there is to reality.

It’s unlikely that physicists everywhere will instantly cease debating quantum mysteries and start driving cars with “res potentia!” bumper stickers. But whether this new proposal triumphs in the quantum debates or not, it raises a key point in the scientific quest to understand reality. Reality is not necessarily what humans think it is or would like it to be. Many quantum interpretations have been motivated by a desire to return to Newtonian determinism, for instance, where cause and effect is mechanical and predictable, like a clock’s tick preceding each tock.

But the universe is not required to conform to Newtonian nostalgia. And more generally, scientists often presume that the phenomena nature offers to human senses reflect all there is to reality. “It is difficult for us to imagine or conceptualize any other categories of reality beyond the level of actual — i.e., what is immediately available to us in perceptual terms,” Kastner and colleagues note. Yet quantum physics hints at a deeper foundation underlying the reality of phenomena — in other words, that “ontology” encompasses more than just events and objects in spacetime.
This proposition sounds a little bit like advocating for the existence of ghosts. But it is actually more of an acknowledgment that things may seem ghostlike only because reality has been improperly conceived in the first place. Kastner and colleagues point out that the motions of the planets in the sky baffled ancient philosophers because supposedly in the heavens, reality permitted only uniform circular motion (accomplished by attachment to huge crystalline spheres). Expanding the boundaries of reality allowed those motions to be explained naturally.

Similarly, restricting reality to events in spacetime may turn out to be like restricting the heavens to rotating spheres. Spacetime itself, many physicists are convinced, is not a primary element of reality but a structure that emerges from processes more fundamental. Because these processes appear to be quantum in nature, it makes sense to suspect that something more than just spacetime events has a role to play in explaining quantum physics.

True, it’s hard to imagine the “reality” of something that doesn’t exist “actually” as an object or event in spacetime. But Kastner and colleagues cite the warning issued by the late philosopher Ernan McMullin, who pointed out that “imaginability must not be made the test for ontology.” Science attempts to discover the real world’s structures; it’s unwarranted, McMullin said, to require that those structures be “imaginable in the categories” known from large-scale ordinary experience. Sometimes things not imaginable do, after all, turn out to be real. No fan of the team ever imagined the Indians would win 22 games in a row.

Mating with Neandertals reintroduced ‘lost’ DNA into modern humans

ORLANDO, Fla. — Interbreeding with Neandertals restored some genetic heirlooms that modern humans left behind in the ancient exodus from Africa, new research suggests.

Those heirlooms are versions of genes, or alleles, that were present in humans’ and Neandertals’ shared ancestors. Neandertals carried many of those old alleles, passing them along generation after generation, while developing their own versions of other genes. A small number of humans left Africa around 100,000 years ago and settled in Asia and Europe. These migrants “lost” the ancestral alleles.
But when the migrants or their descendants interbred with Neandertals, Eurasians reinherited the ancestral heirlooms along with Neandertal DNA, John “Tony” Capra reported October 20 at the annual meeting of the American Society of Human Genetics.

Present-day Europeans have more than 47,000 of these reintroduced ancestral alleles, and East Asians — who have more Neandertal ancestry than Europeans (SN Online: 2/12/15) — carry more than 56,000, said Capra, an evolutionary geneticist at Vanderbilt University in Nashville.

Capra and others have evidence that Neandertal versions of genes make humans more prone to some diseases (SN: 3/5/16, p. 18). Of the thousands of ancestral variants reintroduced into modern humans, only 41 have been linked in genetic studies to diseases, such as skin conditions and neurological and psychiatric disorders, he said. The researchers can’t tell for sure whether the effect is from the ancestral variant or neighboring Neandertal DNA. Capra and Vanderbilt colleague Corinne Simonti’s analyses indicate that the Neandertal DNA is more likely to blame. Many of the ancestral alleles are still present in modern-day Africans, Capra said, “so they’re unlikely to be very, very bad.”

Hot, rocky exoplanets are the scorched cores of former gas giants

Earth may not provide the best blueprint for how rocky planets are born.

An analysis of planets outside the solar system suggests that most hot, rocky exoplanets started out more like gassy Neptunes. Such planets are rocky now because their stars blew their thick atmospheres away, leaving nothing but an inhospitable core, researchers report in a paper posted online October 15 at arXiv.org. That could mean these planets are not as representative of Earth as scientists thought, and using them to estimate the frequency of potentially life-hosting worlds is misleading.
“One of the big discoveries is that Earth-sized, likely rocky planets are incredibly common, at least on hotter orbits,” says planetary scientist Eric Lopez of NASA’s Goddard Space Flight Center in Greenbelt, Md., who wasn’t involved in the study. “The big question is, are those hot exoplanets telling us anything about the frequency of Earthlike planets? This suggests that they might not be.”

Observations so far suggest that worlds about Earth’s size probably cluster into two categories: rocky super-Earths and gaseous mini-Neptunes (SN Online: 6/19/17). Super-Earths are between one and 1.5 times as wide as Earth; mini-Neptunes are between 2.5 and four times Earth’s size. Earlier work showed that there’s a clear gap between these planet sizes.

Because planets that are close to their stars are easier for telescopes to see, most of the rocky super-Earths discovered so far have close-in orbits — with years lasting between about two to 100 Earth days — making the worlds way too hot to host life as we know it. But because they are rocky like Earth, scientists include these worlds with their cooler brethren when estimating how many habitable planets might be out there.

If hot super-Earths start out rocky, perhaps it is because the worlds form later than their puffy mini-Neptune companions, when there’s less gas left in the growing planetary system to build an atmosphere. Or, conversely, such planets, along with mini-Neptunes, may start with thick atmospheres. These rocky worlds may have had their atmospheres stripped away by stellar winds.
Now, exoplanet astronomer Vincent Van Eylen of Leiden University in the Netherlands and his colleagues have shown that the fault is in the stars. “You really have these two populations, and the influence of the star is what creates this separation,” Van Eylen says. That result could warn astronomers not to rely too heavily on these hot, rocky worlds when calculating how many habitable planets are likely to exist.

To measure the planets’ sizes, astronomers need to know the sizes of their stars. Van Eylen and colleagues analyzed 117 planets whose host stars’ sizes had been measured using astroseismology. This technique tracks how often the star’s brightness changes as interior oscillations ripple through it, and uses the frequency to determine its size.

“Think of the stars as musical instruments,” Van Eylen says. A double bass and a violin produce sound the same way, but the pitch is different because of the instrument’s size. “It’s exactly the same thing with stars.”

The researchers then calculated the planets’ sizes — between one and four times the Earth — with about four times greater precision than in previous studies. As expected, the planets clustered in groups of around 1.5 and 2.5 times Earth’s radius, leaving a gap in the middle.

Next the team looked at how the planets’ sizes changed with distance from the host star. Planets that were rocky from the start should be smaller close to the stars, where studies of other young star systems suggest there should have been less material available when these planets were forming. But if proximity to a star’s winds is key, there should be some larger rocky worlds closer in, with smaller gaseous worlds farther out.

Van Eylen’s planets matched the second picture: The largest of the rocky planets nestled close to the stars were bigger than the distant ones. That suggests the rocky planets once had atmospheres, and lost them.

“It’s not fair to take the close-in planets and assume that the more distant planets are just like them,” says exoplanet astronomer Courtney Dressing of the University of California, Berkeley. “You might be fooling yourself.”

This sea slug makes its prey do half the food catching

Kleptopredation
klep-toe-preh-day-shun n.
A food-gathering strategy of eating an organism and the meal it just ate.

A wily sea slug has a way to get two meals in one: It gobbles up smaller predators that have recently gulped in their own prey.

“Kleptopredation” is the term Trevor Willis of the University of Portsmouth in England and his colleagues propose for this kind of food theft by well-timed predation.

Researchers knew that the small Mediterranean nudibranch Cratena peregrina, with a colorful mane of streamers rippling off its body, climbs and preys on pipe cleaner‒skinny, branched colonies of Eudendrium racemosum hydroids, which are distant relatives of corals. The nudibranchs devour the individual hydroid polyps and, new tests show, prefer them well fed.
In experimental buffets with fed or hungry polyps, the nudibranchs ate faster when polyps were fat with just-caught plankton. In this way, at least half of a nudibranch’s diet is plankton. This quirk explains why some biochemical signatures that distinguish predators from prey don’t work out clearly for nudibranchs and hydroids, the researchers report November 1 in Biology Letters.

A weird echo of this meal-stealing strategy shows up in certain jumping spiders. The arachnids don’t have the biology to drink vertebrate blood themselves. Instead, they catch a lot of female mosquitoes that have just tanked up (SN: 10/15/05, p. 246).

This material does weird things under pressure

A newly fabricated material does more than just hold up under pressure. Unlike many ordinary objects that shrink when squeezed, the metamaterial — a synthetic structure designed to exhibit properties not typically found in natural materials — expands at higher pressures.

This counterintuitive material is made up of a grid of hollow 3-D crosses — shaped like six-way pipe fittings — mere micrometers across. When surrounding pressure of air, water or some other substance increases, the crosses’ circular surfaces bow inward. Because of the way these crosses are connected with levers, that warping forces the crosses to rotate and push away from each other, causing the whole structure to expand, says study coauthor Jingyuan Qu, a physicist at Karlsruhe Institute of Technology in Germany.
The researchers were “very clever about how they connected this quite complex set of structural elements,” says Michael Haberman, a mechanical engineer at the University of Texas at Austin, who wasn’t involved in the work.

Qu and colleagues fashioned a microcube of their metamaterial, described in a paper accepted to Physical Review X, from a plasticlike substance, using a microversion of 3-D printing. When the researchers placed the material inside a gas chamber and cranked up the air pressure from one bar (about the atmospheric pressure at sea level) to five bars, the cube’s volume increased by about 3 percent.
Until now, researchers have only described such pressure-expanding metamaterials in mathematical models or computer simulations, says Joseph Grima, a materials scientist at the University of Malta in Msida not involved in the work. The new metamaterial provides “much-needed proof” that this type of stuff can actually be fabricated, he says.

Adjusting the thickness of the crosses’ surfaces could make this new metamaterial more or less expandable: The thicker it is, the less the structure expands. A metamaterial fine-tuned to stay the same size under a wide range of pressures could be used to build equipment that withstands the crushing pressures of the deep sea or the vacuum of outer space.

NASA is headed to Earth’s outermost edge

NASA is going for the gold. Its GOLD mission — short for Global-scale Observations of the Limb and Disk mission — is slated for launch January 25, the agency announced January 4. GOLD will study the zone where Earth’s atmosphere meets outer space. Its goal is to better understand how both solar and terrestrial storms affect the ionosphere, an upper atmosphere region crucial for radio communications.

Earth’s ionosphere, where incoming cosmic and solar rays interact with the atmosphere to create charged particles, extends from about 75 to about 1,200 kilometers above the planet’s surface. From its geostationary orbit 35,000 kilometers high, GOLD will monitor the ionosphere’s density and temperature using an instrument called an ultraviolet imaging spectrograph. Previous satellites have provided snapshots of the ionosphere, but this is the first time an instrument will keep track of changes in the layers through time, collecting data every 30 minutes.

GOLD is the first NASA mission to be launched aboard a commercial communications satellite. NASA plans to launch a complementary mission, the Ionospheric Connection Explorer, later this year. That mission will travel directly through the ionosphere, studying its makeup, density and temperature.

Will Smith narrates ‘One Strange Rock,’ but astronauts are the real stars

“The strangest place in the whole universe might just be right here.” So says actor Will Smith, narrating the opening moments of a new documentary series about the wonderful unlikeliness of our own planet, Earth.

One Strange Rock, premiering March 26 on the National Geographic Channel, is itself a peculiar and unlikely creation. Executive produced by Academy Award–nominated Darren Aronofsky and by Jane Root of the production company Nutopia and narrated by Smith, the sprawling, ambitious 10-episode series is chock-full of stunningly beautiful images and CGI visuals of our dynamic planet. Each episode is united by a theme relating to Earth’s history, such as the genesis of life, the magnetic and atmospheric shields that protect the planet from solar radiation and the ways in which Earth’s denizens have shaped its surface.
The first episode, “Gasp,” ponders Earth’s atmosphere and where its oxygen comes from. In one memorable sequence, the episode takes viewers on a whirlwind journey from Ethiopia’s dusty deserts to the Amazon rainforest to phytoplankton blooms in the ocean. Dust storms from Ethiopia, Smith tells us, fertilize the rainforest. And that rainforest, in turn, feeds phytoplankton. A mighty atmospheric river, fueled by water vapor from the Amazon and heat from the sun, flows across South America until it reaches the Andes and condenses into rain. That rain erodes rock and washes nutrients into the ocean, feeding blooms of phytoplankton called diatoms. One out of every two breaths that we take comes from the photosynthesis of those diatoms, Smith adds.
As always, Smith is an appealing everyman. But the true stars of the series may be the eight astronauts, including Chris Hadfield and Nicole Stott, who appear throughout the series. In stark contrast to the colorful images of the planet, the astronauts are filmed alone, their faces half in shadow against a black background as they tell stories that loosely connect to the themes. The visual contrast emphasizes the astronauts’ roles as outsiders who have a rare perspective on the blue marble.
“Having flown in space, I feel this connection to the planet,” Stott told Science News . “I was reintroduced to the planet.” Hadfield had a similar sentiment: “It’s just one tiny place, but it’s the tiny place that is ours,” he added.
Each astronaut anchors a different episode. In “Gasp,” Hadfield describes a frightening moment during a spacewalk outside the International Space Station when his eyes watered. Without gravity, the water couldn’t form into teardrops, so it effectively blinded him. To remove the water, he was forced to allow some precious air to escape his suit. It’s a tense moment that underscores the pricelessness of the thin blue line, visible from space, that marks Earth’s atmosphere. “It contains everything that’s important to us,” Hadfield says in the episode. “It contains life.”

Stott, meanwhile, figures prominently in an episode called “Storm.” Instead of a weather system, the title refers to the rain of space debris that Earth has endured throughout much of its history — including the powerful collision that formed the moon (SN: 4/15/17, p. 18). Stott describes her own sense of wonder as a child, watching astronauts land on our closest neighbor — and how the travels of those astronauts and the rocks they brought back revealed that Earth and the moon probably originated from the same place.

It’s glimpses like these into the astronauts’ lives and personalities — scenes of Hadfield strumming “Space Oddity” on a guitar, for example, or Stott chatting with her son in the family kitchen — that make the episodes more than a series of beautiful and educational IMAX films. Having been away from the planet for a short time, the astronauts see Earth as precious, and they convey their affection for it well. Stott said she hopes that this will be the ultimate takeaway for viewers, for whom the series may serve as a reintroduction to the planet they thought they knew so well. “I hope that people will … appreciate and acknowledge the significance of [this reintroduction],” she said, “that it will result in an awareness and obligation to take care of each other.”
Editor’s note: This story was updated on March 19, 2018, to add a mention of a second executive producer.