Plate tectonics may have gotten a pretty early start in Earth’s history. Most estimates put the onset of when the large plates that make up the planet’s outer crust began shifting at around 3 billion years ago. But a new study in the Sept. 22 Science that analyzes titanium in continental rocks asserts that plate tectonics began 500 million years earlier.
Nicolas Greber, now at the University of Geneva, and colleagues suggest that previous studies got it wrong because researchers relied on chemical analyses of silicon dioxide in shales, sedimentary rocks that bear the detritus of a variety of continental rocks. These rocks’ silicon dioxide composition can give researchers an idea of when continental rocks began to diverge in makeup from oceanic rocks as a result of plate tectonics.
But weathering can wreak havoc on the chemical makeup of shales. To get around that problem, Greber’s team turned to a new tool: the ratios of two titanium isotopes, forms of the same element that have different masses. The proportion of titanium isotopes in the rocks is a useful stand-in for the difference in silicon dioxide concentration between continental and oceanic rocks, and isn’t so easily altered by weathering. Those data helped the team estimate that continental rocks — and therefore plate tectonics — were already going strong by 3.5 billion years ago.
When you think about it, it shouldn’t be surprising that there’s more than one way to explain quantum mechanics. Quantum math is notorious for incorporating multiple possibilities for the outcomes of measurements. So you shouldn’t expect physicists to stick to only one explanation for what that math means. And in fact, sometimes it seems like researchers have proposed more “interpretations” of this math than Katy Perry has followers on Twitter.
So it would seem that the world needs more quantum interpretations like it needs more Category 5 hurricanes. But until some single interpretation comes along that makes everybody happy (and that’s about as likely as the Cleveland Browns winning the Super Bowl), yet more interpretations will emerge. One of the latest appeared recently (September 13) online at arXiv.org, the site where physicists send their papers to ripen before actual publication. You might say papers on the arXiv are like “potential publications,” which someday might become “actual” if a journal prints them.
And that, in a nutshell, is pretty much the same as the logic underlying the new interpretation of quantum physics. In the new paper, three scientists argue that including “potential” things on the list of “real” things can avoid the counterintuitive conundrums that quantum physics poses. It is perhaps less of a full-blown interpretation than a new philosophical framework for contemplating those quantum mysteries. At its root, the new idea holds that the common conception of “reality” is too limited. By expanding the definition of reality, the quantum’s mysteries disappear. In particular, “real” should not be restricted to “actual” objects or events in spacetime. Reality ought also be assigned to certain possibilities, or “potential” realities, that have not yet become “actual.” These potential realities do not exist in spacetime, but nevertheless are “ontological” — that is, real components of existence.
“This new ontological picture requires that we expand our concept of ‘what is real’ to include an extraspatiotemporal domain of quantum possibility,” write Ruth Kastner, Stuart Kauffman and Michael Epperson.
Considering potential things to be real is not exactly a new idea, as it was a central aspect of the philosophy of Aristotle, 24 centuries ago. An acorn has the potential to become a tree; a tree has the potential to become a wooden table. Even applying this idea to quantum physics isn’t new. Werner Heisenberg, the quantum pioneer famous for his uncertainty principle, considered his quantum math to describe potential outcomes of measurements of which one would become the actual result. The quantum concept of a “probability wave,” describing the likelihood of different possible outcomes of a measurement, was a quantitative version of Aristotle’s potential, Heisenberg wrote in his well-known 1958 book Physics and Philosophy. “It introduced something standing in the middle between the idea of an event and the actual event, a strange kind of physical reality just in the middle between possibility and reality.”
In their paper, titled “Taking Heisenberg’s Potentia Seriously,” Kastner and colleagues elaborate on this idea, drawing a parallel to the philosophy of René Descartes. Descartes, in the 17th century, proposed a strict division between material and mental “substance.” Material stuff (res extensa, or extended things) existed entirely independently of mental reality (res cogitans, things that think) except in the brain’s pineal gland. There res cogitans could influence the body. Modern science has, of course, rejected res cogitans: The material world is all that reality requires. Mental activity is the outcome of material processes, such as electrical impulses and biochemical interactions.
Kastner and colleagues also reject Descartes’ res cogitans. But they think reality should not be restricted to res extensa; rather it should be complemented by “res potentia” — in particular, quantum res potentia, not just any old list of possibilities. Quantum potentia can be quantitatively defined; a quantum measurement will, with certainty, always produce one of the possibilities it describes. In the large-scale world, all sorts of possibilities can be imagined (Browns win Super Bowl, Indians win 22 straight games) which may or may not ever come to pass.
If quantum potentia are in some sense real, Kastner and colleagues say, then the mysterious weirdness of quantum mechanics becomes instantly explicable. You just have to realize that changes in actual things reset the list of potential things.
Consider for instance that you and I agree to meet for lunch next Tuesday at the Mad Hatter restaurant (Kastner and colleagues use the example of a coffee shop, but I don’t like coffee). But then on Monday, a tornado blasts the Mad Hatter to Wonderland. Meeting there is no longer on the list of res potentia; it’s no longer possible for lunch there to become an actuality. In other words, even though an actuality can’t alter a distant actuality, it can change distant potential. We could have been a thousand miles away, yet the tornado changed our possibilities for places to eat.
It’s an example of how the list of potentia can change without the spooky action at a distance that Einstein alleged about quantum entanglement. Measurements on entangled particles, such as two photons, seem baffling. You can set up an experiment so that before a measurement is made, either photon could be spinning clockwise or counterclockwise. Once one is measured, though (and found to be, say, clockwise), you know the other will have the opposite spin (counterclockwise), no matter how far away it is. But no secret signal is (or could possibly be) sent from one photon to the other after the first measurement. It’s simply the case that counterclockwise is no longer on the list of res potentia for the second photon. An “actuality” (the first measurement) changes the list of potentia that still exist in the universe. Potentia encompass the list of things that may become actual; what becomes actual then changes what’s on the list of potentia.
Similar arguments apply to other quantum mysteries. Observations of a “pure” quantum state, containing many possibilities, turns one of those possibilities into an actual one. And the new actual event constrains the list of future possibilities, without any need for physical causation. “We simply allow that actual events can instantaneously and acausally affect what is next possible … which, in turn, influences what can next become actual, and so on,” Kastner and colleagues write.
Measurement, they say, is simply a real physical process that transforms quantum potentia into elements of res extensa — actual, real stuff in the ordinary sense. Space and time, or spacetime, is something that “emerges from a quantum substratum,” as actual stuff crystalizes out “of a more fluid domain of possibles.” Spacetime, therefore, is not all there is to reality.
It’s unlikely that physicists everywhere will instantly cease debating quantum mysteries and start driving cars with “res potentia!” bumper stickers. But whether this new proposal triumphs in the quantum debates or not, it raises a key point in the scientific quest to understand reality. Reality is not necessarily what humans think it is or would like it to be. Many quantum interpretations have been motivated by a desire to return to Newtonian determinism, for instance, where cause and effect is mechanical and predictable, like a clock’s tick preceding each tock.
But the universe is not required to conform to Newtonian nostalgia. And more generally, scientists often presume that the phenomena nature offers to human senses reflect all there is to reality. “It is difficult for us to imagine or conceptualize any other categories of reality beyond the level of actual — i.e., what is immediately available to us in perceptual terms,” Kastner and colleagues note. Yet quantum physics hints at a deeper foundation underlying the reality of phenomena — in other words, that “ontology” encompasses more than just events and objects in spacetime. This proposition sounds a little bit like advocating for the existence of ghosts. But it is actually more of an acknowledgment that things may seem ghostlike only because reality has been improperly conceived in the first place. Kastner and colleagues point out that the motions of the planets in the sky baffled ancient philosophers because supposedly in the heavens, reality permitted only uniform circular motion (accomplished by attachment to huge crystalline spheres). Expanding the boundaries of reality allowed those motions to be explained naturally.
Similarly, restricting reality to events in spacetime may turn out to be like restricting the heavens to rotating spheres. Spacetime itself, many physicists are convinced, is not a primary element of reality but a structure that emerges from processes more fundamental. Because these processes appear to be quantum in nature, it makes sense to suspect that something more than just spacetime events has a role to play in explaining quantum physics.
True, it’s hard to imagine the “reality” of something that doesn’t exist “actually” as an object or event in spacetime. But Kastner and colleagues cite the warning issued by the late philosopher Ernan McMullin, who pointed out that “imaginability must not be made the test for ontology.” Science attempts to discover the real world’s structures; it’s unwarranted, McMullin said, to require that those structures be “imaginable in the categories” known from large-scale ordinary experience. Sometimes things not imaginable do, after all, turn out to be real. No fan of the team ever imagined the Indians would win 22 games in a row.
How do you observe the invisible currents of the atmosphere? By studying the swirling, billowing loads of sand, sea salt and smoke that winds carry. A new simulation created by scientists at NASA’s Goddard Space Flight Center in Greenbelt, Md., reveals just how far around the globe such aerosol particles can fly on the wind.
The complex new simulation, powered by supercomputers, uses advanced physics and a state-of-the-art climate algorithm known as FV3 to represent in high resolution the physical interactions of aerosols with storms or other weather patterns on a global scale (SN Online: 9/21/17). Using data collected from NASA’s Earth-observing satellites, the simulation tracked how air currents swept aerosols around the planet from August 1, 2017, through November 1, 2017. In the animation, sea salt (in blue) snagged by winds sweeping across the ocean’s surface becomes entrained in hurricanes Harvey, Irma, Jose and Maria, revealing their deadly paths. Wisps of smoke (in gray) from fires in the U.S. Pacific Northwest drift toward the eastern United States, while Saharan dust (in brown) billows westward across the Atlantic Ocean to the Gulf of Mexico. And the visualization shows how Hurricane Ophelia formed off the coast of Africa, pulling in both Saharan dust and smoke from Portugal’s wildfires and transporting the particles to Ireland and the United Kingdom.
Warming waters are turning some sea turtle populations female — to the extreme. More than 99 percent of young green turtles born on beaches along the northern Great Barrier Reef are female, researchers report January 8 in Current Biology. If that imbalance in sex continues, the overall population could shrink.
Green sea turtle embryos develop as male or female depending on the temperature at which they incubate in sand. Scientists have known that warming ocean waters are skewing sea turtle populations toward having more females, but quantifying the imbalance has been hard. Researchers analyzed hormone levels in turtles collected on the Great Barrier Reef (off the northeastern coast of Australia) to determine their sex, and then used genetic data to link individuals to the beaches where the animals originated. That two-pronged approach allowed the scientists to estimate the ratio of males to females born at different sites.
The sex ratio in the overall population is “nothing out of the ordinary,” with roughly one juvenile male for every four juvenile females, says study coauthor Michael Jensen, a marine biologist with the National Oceanic and Atmospheric Administration in La Jolla, Calif. But breaking the data down by the turtles’ region of origin revealed worrisome results. In the cooler southern Great Barrier Reef, 67 percent of hatched juveniles were female. But more than 99 percent of young turtles hatched in sand soaked by warmer waters in the northern Great Barrier Reef were female — with one male for every 116 females. That imbalance has increased over time: 86 percent of the adults born in the area more than 20 years ago were female.
It’s unclear what the long-term impact of such a strong skew will be, but it’s probably not good news for the turtles. Sea turtle populations can get by with fewer males than females (SN: 3/4/17, p. 16), but scientists aren’t sure how many is too few. And while turtles can adapt their behavior, such as laying eggs in cooler places, the animals’ instinct is to nest in the same spot they were born, which works against such a change.
Orlando Brown Jr.'s first order of business as a member of the Bengals? Partner with Cincinnati's mayor in a humorous trailer for the team's Week 17 clash vs. Brown's old squad, the Chiefs.
Brown showed off his acting chops alongside the head of his new hometown.
Check it out here: The full NFL 2023 schedule will be announced Thursday, May 11.
Pureval famously got into a war of words with Kansas City stars Patrick Mahomes and Travis Kelce when the two sides battled in January for a berth in the Super Bowl. It seemed his words helped to light a fire under KC; Mahomes threw for three touchdowns as the Chiefs sent the Bengals home and marched toward another Super Bowl triumph.
MORE: Chiefs among teams facing hardest schedules in 2023
Back then, Brown was protecting Mahomes' blind side. He switched sides during the offseason, signing a four-year, $64 million deal with Cincinnati to keep rushers from putting Joe Burrow on his back. As such, his loyalties have changed, and in a show of goodwill, he offered Pureval some advice.
"Yeah, I think that was better than last time," Brown said after recording Pureval's vanilla reveal of the New Year's Eve game scheduled to be played in Kansas City. The mayor was far less fiery than when he declared Arrowhead Stadium "Burrowhead" ahead of the AFC championship game.
MORE: Best games on 2023 NFL schedule by team
Suffice to say, Mahomes and Kelce got the last laugh then. Not only did they vanquish their AFC rivals, they also were loud about it, hopping on the microphone to dish dirt.
"Know your role and shut your mouth, you jabroni," Kelce said, mimicking The Rock.
MORE: Ranking all 16 AFC QBs as Aaron Rodgers joins loaded conference
Revenge is a dish best served cold. But it's always nice to see someone laugh at themselves after getting caught with their foot in their mouth. Brown's cameo should add intrigue to what is certain to be one of the most-watched games of the 2023 regular season.
Zeptonewton ZEP-toe-new-ton n. A unit of force equal to one billionth of a trillionth of a newton.
An itty-bitty object can be used to suss out teeny-weeny forces.
Scientists used an atom of the element ytterbium to sense an electromagnetic force smaller than 100 zeptonewtons, researchers report online March 23 in Science Advances. That’s less than 0.0000000000000000001 newtons — with, count ‘em, 18 zeroes after the decimal. At about the same strength as the gravitational pull between a person in Dallas and another in Washington, D.C., that’s downright feeble. After removing one of the atom’s electrons, researchers trapped the atom using electric fields and cooled it to less than a thousandth of a degree above absolute zero (–273.15° Celsius) by hitting it with laser light. That light, counterintuitively, can cause an atom to chill out. The laser also makes the atom glow, and scientists focused that light into an image with a miniature Fresnel lens, a segmented lens like those used to focus lighthouse beams.
Monitoring the motion of the atom’s image allowed the researchers to study how the atom responded to electric fields, and to measure the minuscule force caused by particles of light scattering off the atom, a measly 95 zeptonewtons.