Scientists watch as bacteria evolve antibiotic resistance

For bacteria, practice makes perfect: Adjusting to ever higher levels of antibiotics preps them to morph into super resistant strains, and scientists can now watch it happen. A new device — a huge petri dish coated with different concentrations of antibiotics — makes this normally hidden process visible, microbiologist Michael Baym and colleagues report in the Sept. 9 Science. The setup gives a step-by-step picture of how garden-variety microbes become antibiotic-resistant superbugs.

“As someone who’s studied evolutionary biology for a long time, I think it has a real wow factor,” says Sam Brown, a microbiologist at the Georgia Institute of Technology in Atlanta who wasn’t involved in the study. The bacteria are “climbing this impossible mountain of antibiotics.”
Scientists often study microbial evolution in flasks where everything is mixed together. “Inside that flask, in order for a new strain to evolve, the new mutant has to be more fit than everything around it,” says Baym, of Harvard Medical School. “But in nature, we see a second dynamic: You don’t necessarily need to be more fit than everything around you. You just need to make it into a new environment.”

Baym and colleagues modeled those spatial dynamics using a giant dish more than a meter long instead of a standard palm-sized petri dish. That gave the bacteria more room to diversify and also let the researchers create a gradient of antibiotics on the plate. Low concentrations of trimethoprim or ciprofloxacin antibiotics at the edges ramped up to much higher levels in the middle. Then, the team put Escherichia coli bacteria on each end of the plate and watched the microbes multiply over the next week and a half.

In general, as the E. coli mutated in ways that let them handle higher and higher levels of antibiotics, their descendants could press into new territory on the plate. The bacteria that made it to the middle could tolerate doses of antibiotics a thousand times higher than what was necessary to kill the original bacteria.

But antibiotic resistance didn’t always make bacteria competitive colonizers. Highly resistant bacteria sometimes spread more slowly. Trapped in the back by faster-moving bacteria at the forefront, the stragglers’ descendants formed pockets of super-resistance at lower antibiotic concentrations.
Baym and his colleagues think the experimental setup could be used to study microbial evolution under other environmental and spatial constraints, like the availability of particular nutrients.

Melissa Omand’s clever tech follows the fate of ocean carbon

As chief scientist for a voyage of the research vessel Endeavor, oceanographer Melissa Omand oversaw everything from the deployment of robotic submarines to crew-member bunk assignments. The November 2015 expedition 150 kilometers off Rhode Island’s coast was collecting data for Omand’s ongoing investigations of the fate of carbon dioxide soaked up by the ocean.

But Omand, an assistant professor at the University of Rhode Island’s campus in Narragansett, wasn’t on the ship. Instead of riding the waves with her crew, she was working, sometimes 16-hour days, inside a dark room at the university’s Inner Space Center — staring at computer monitors in a sort of NASA mission control for oceanographers. When she submitted the trip proposal a year earlier, she hadn’t foreseen that she’d be eight months pregnant with her first child when the ship set sail.
Still, missing the trip was unthinkable, she says. The Inner Space Center, she realized, offered a way to direct the mission from shore via satellite. After proposing the solution to her higher-ups, and a lot of meetings that followed, she got permission to be the first chief scientist to remotely lead an Endeavor cruise.

“She doesn’t let many obstacles get in her way,” says Colleen Durkin, an oceanographer at Moss Landing Marine Laboratories in California, who participated in the cruise. “That’s one of the fun things about working with her. She’s willing to try new things.”
Her commitment to her science and her drive to find creative solutions are helping Omand tackle a big problem in oceanography. For a decade, she has been studying the mechanisms — such as currents and the dining and dying of microorganisms — that move carbon and nutrients through the ocean. In a breakout paper, published last year in Science, she reported the discovery that eddies can pull carbon from phytoplankton deep into the ocean, a previously undescribed phenomenon. Studying the fate of that carbon isn’t just interesting, she says, it’s vital to predicting the fate of our climate. “The ocean has a huge capacity to absorb excess carbon dioxide in our atmosphere,” Omand says. But as the planet warms, atmosphere and ocean might interact differently. Scientists need all the information they can get to figure out how to adapt to those changing conditions and mitigate the effects of climate change.

Omand, 36, first got her feet wet on the rivers and lakes surrounding her hometown of Toronto. In her teens, she worked as a canoe guide, exploring the region’s waterways. “That was absolutely the root of my interest in earth science and environmental issues,” she says. “I’m essentially doing the same thing now, just on a much bigger boat.”

After starting off as a premed student at the University of Guelph in Canada, she was ultimately drawn to the university’s physics program. “I found it very satisfying that all these problems boiled down to a few underlying rules and equations,” she says. During her undergraduate studies, her focus was millions and millions of kilometers away from Earth’s oceans. She coded software used to help calibrate X-ray instruments on NASA’s Mars Exploration Rovers, which identified the makeup of Martian rocks.
While considering areas of physics for her graduate studies, Omand received an email that altered her heading. Chris Garrett, a professor (now emeritus) at Canada’s University of Victoria, introduced her to physical oceanography. “He showed me demonstrations of what happens to dye in a rotating water tank,” she recalls. “I was hooked by that.” The churning of water appealed to Omand for the same reason the field of physics did: Whether in tanks or oceans, the water’s movements can be expressed by a set of specific equations, called the Navier-Stokes equations.

Omand has applied these equations in much of her work. During a Ph.D. at the Scripps Institution of Oceanography in La Jolla, Calif., she and colleagues studied the origins of a red tide off California’s coast. The team found that the red tide, fertilized by a layer of nutrients, had been festering under the ocean surface for a week before being drawn upward. Omand and her colleagues used a Jet Ski modified with a GPS system and scientific instruments to collect data. Later, as a postdoctoral researcher at Woods Hole Oceanographic Institution in Massachusetts, she and mentor Amala Mahadevan investigated mechanisms to explain how nitrogen, an important nutrient for phytoplankton, moves around below the sunlit layer of the sea.

During her time at Woods Hole, Omand also started tracking the journey of CO2 taken in by springtime algae blooms in the North Atlantic.
When the phytoplankton in these colossal blooms, which can stretch hundreds of kilometers across, die or are digested by other marine life, particles containing organic carbon are released into the water. The heavier of these particles sink, quarantining the carbon from the atmosphere. About 30 percent of all CO2 emitted by human activities has ended up in the oceans, thanks in part to these sinking particles.

Scientists had believed that smaller particles would remain near the surface. But with robotic submarines called gliders that cruised up and down the water column sensing light scattered by the particles, Omand and colleagues found a surprisingly large amount of small carbon particles. These particles were around 100 to 350 meters deep, in the ocean’s “twilight zone,” where phytoplankton rarely live.
Omand combined measurements such as temperature and salinity from several gliders to explain how the particles got pulled so far down. By analyzing those measurements alongside computer simulations and satellite data — an innovative mix of sources that provided finer details and the bigger picture — she showed that the carbon-rich particles were carried down by spiraling ocean currents called eddies. Water escaping these bowl-shaped depressions can become sandwiched between deeper ocean layers, remaining trapped along with any particles even once an eddy subsides.

The accompanying carbon drain cools the Earth, says Eric D’Asaro, an oceanographer at the University of Washington in Seattle who collaborated with Omand on the research. Though the finding doesn’t change the total amount of carbon known to be taken in, the study identifies a new mechanism that could account for as much as half of all carbon known to be pulled into the deep North Atlantic during spring. The mechanism could also play a role elsewhere in the world’s oceans, D’Asaro, Omand and colleagues reported in April 2015 in Science.

“Her work sets the table for the next decade in terms of understanding the interaction between the turbulence of the ocean and how carbon is injected down to depth,” says David Siegel, an oceanographer from the University of California, Santa Barbara. “She’s going to be one of the new leaders of this field.”

Now a mother — her daughter was born a few weeks after the cruise — and an assistant professor at the University of Rhode Island, Omand continues her creative problem-solving, often by calling on unexpected technology. On a research trip in June (she was on the ship this time), Omand used an iPhone in a waterproof case to automatically snap pictures every half hour of particles raining down from the ocean’s top layer. Scientists previously measured the rates of sinking particles with traps that provided no information about how the rates changed throughout the day. Omand got the idea to affix her old iPhone to the traps after being offered only $40 for the used phone. “There’s got to be something really amazing I can do with this,” she thought.

Next spring, Omand will harness the same telepresence software she used for the 2015 Endeavor trip to virtually take undergraduate students on board. Omand’s ability to harness technology to solve tricky scientific challenges is a big reason why she can identify new truths about our oceans, says Mahadevan. “Every problem she touches,” Mahadevan says, “something beautiful comes out.”

Mercury’s surface still changing

Mercury has gotten some new wrinkles in its old age. The innermost planet shows signs of relatively recent tectonic activity, a new study suggests.

Tiny cliffs on the surface — just tens of meters high and a few kilometers long — resemble breaks in the planet’s crust, researchers report online September 26 in Nature Geoscience. The diminutive sizes of the cliffs, their sharp edges and lack of large overlapping craters imply that the faults are geologically young — less than 50 million years old. That’s much younger than Mercury’s larger, eroded scarps seen elsewhere, which probably arose more than 3.5 billion years ago. The small scarps indicate that the surface still fractures as Mercury cools and contracts, the researchers suggest, though other explanations are possible.
Thomas Watters, a geologist at the Smithsonian Institution in Washington, D.C., and colleagues discovered the young escarpments in images taken by NASA’s MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. During the last 18 months of the mission, the spacecraft inched closer to the surface of Mercury, revealing new details such as these small scarps. The mission ended with an intentional crash landing on April 30, 2015 (SN Online: 4/30/15).

Mercury’s continued contraction isn’t surprising, says Sean Solomon, a planetary scientist at Columbia University. “It’s demanded by physics,” he says. Mercury has gradually cooled over its 4.6-billion-year history. As it cools, it shrinks. Sometimes that shrinkage cracks the surface. All of the other rocky planets shrivel over time as well, but their atmospheres have erased much of the evidence. Only on Mercury and the moon — both airless — is the history of contraction preserved because of limited erosion.

It’s not clear, though, if these new faults are related to that shrinking. “In and of themselves, they don’t tell us very much,” says Paul Byrne, a planetary geologist at North Carolina State University in Raleigh. Without an analysis of how the small, young scarps relate to the large, old scarps, he says, it’s hard to draw conclusions. The new arrivals could just as well be produced by shifting rubble or shock waves from run-ins with asteroids, and if so would not be a sign of continuing tectonic activity.

A closer inspection of Mercury will have to wait until the European spacecraft BepiColombo, scheduled to launch in 2018, arrives in late 2024. While its altitude will be similar to MESSENGER’s, BepiColombo will get a better look at Mercury’s southern hemisphere, which should allow researchers to get a more global view of how all these wrinkles in the surface tie together.

A metallic odyssey, what’s causing sunspots and more reader feedback

Metallic odyssey
Scientists are getting closer to turning hydrogen into a solid metal, Emily Conover reported in “Chasing a devious metal” (SN: 8/20/16, p. 18).

“If, as some scientists think, [metallic hydrogen] formed under intense pressure remains solid at room temperature, why don’t we find any on our planet?” asked Michael Brostek. “If formed in a star that subsequently explodes, wouldn’t some make its way to us like other elements we have that were formed within stars?
“We do not believe that conditions exist in stars for solid metallic hydrogen to form,” says Harvard University physicist Isaac Silvera. “The temperatures are too high.” Above a certain temperature, solid metallic hydrogen would convert to a more stable phase. If that transition temperature is low enough, it could explain why we don’t see metallic hydrogen on Earth.

The relationship between metallic hydrogen and everyday hydrogen is similar to the relationship between diamond and graphite, a more stable phase. “If diamond is heated to a few thousand degrees Kelvin, it will convert to graphite,” Silvera says. “I do not recommend experimenting with a valuable stone!”

Pass the salt
In “Quenching society’s thirst” (SN: 8/20/16, p. 22), Thomas Sumner reported on next-generation desalination technologies that use improved and energy-efficient materials. Desalination efforts could help meet the world’s growing need for freshwater.

Reader Sallie Reynolds wondered what happens to the salt left behind.
Most desalination plants end up with briny leftover water that they pump deep underground (away from sources of drinking water) or dilute into a nearby water source, such as the ocean. But some facilities extract salt crystals from the desalination leftovers using evaporation ponds. In solid form, the salt can be stored, transported or dumped at landfills. “This salt could potentially be used for industrial
purposes, such as glassmaking, tanning, metal refining and cement manufacturing,” Sumner says. “The downside of evaporation ponds is that you need a lot of available space and a relatively warm, dry climate.”

Sun spotting
The sun’s magnetic field rises to the surface no faster than about 500 kilometers per hour — the same speed that gas rises and falls within the sun. Moving gas may help guide the field, Christopher Crockett reported in “Gas steers sun’s magnetic fields” (SN: 8/20/16, p. 5).

Mary Jane Knox wondered whether planets, moons and other celestial bodies in the solar system might contribute to the formation of sunspots and other solar activity: “Could they be reflecting the sun’s rays back on it causing hot spots which might allow the eruption of the magnetic fields?”

Planets don’t have anything to do with dark spots on our sun, Crockett says. Sunspots, which are cooler than the surrounding gas, are caused by strong magnetic fields that prevent hot gas from bubbling up to the surface. “Planets were once considered culprits,” he notes. In 1972, aerospace engineer Karl Wood calculated that periodic planetary alignments seemed to correspond to upticks in sunspot activity. But later work showed no link.

For other stars, planets may play a role in boosting solar activity. Some stars host planets roughly the size of Jupiter on very tight orbits. Magnetic fields from a few of these worlds appear to trigger hot spots on their parent stars.

Correction
“Quenching society’s thirst” (SN: 8/20/16, p. 22) states that a floating desalination farm would cover three-tenths of a square kilometer of ocean. In fact, each floating farm would stretch 300 meters long by 100 meters wide, covering only three-hundredths of a square kilo­meter of ocean. This area could provide about a square kilometer’s worth of stacked cultivable surfaces, depending on the crop.

KATRIN experiment readies for quest to find neutrino’s mass

Scientists may soon find out how tiny neutrinos really are. On October 14, scientists switched on the Karlsruhe Tritium Neutrino experiment, or KATRIN, located at the Karlsruhe Institute of Technology in Germany, which aims to measure the mass of the petite particles for the first time.

KATRIN will study neutrinos, which are less than a millionth the mass of an electron, by sifting through the aftermath of radioactive decays of tritium, an isotope of hydrogen with two neutrons. Tritium decays into helium-3, emitting a neutrino and an electron in the process. Because neutrinos are hard to detect, scientists measure the energy of the electrons emitted and use that information to deduce the neutrino mass.

KATRIN has begun taking test data, but the experiment is not yet filled with the radioactive tritium gas necessary to collect data for analysis. “This was a big milestone because it means that all the other systems are up and ready to go, and we’re taking data,” says KATRIN member Joseph Formaggio of MIT. Official data taking should begin in 2017.

Maps show genetic diversity in mammals, amphibians around the world

Maps have long been used to show the animal kingdom’s range, regional mix, populations at risk and more. Now a new set of maps reveals the global distribution of genetic diversity.

“Without genetic diversity, species can’t evolve into new species,” says Andreia Miraldo, a population geneticist at the Natural History Museum of Denmark in Copenhagen. “It also plays a fundamental role in allowing species populations to adapt to changes in their environment.”
Miraldo and her colleagues gathered geographical coordinates for more than 92,000 records of mitochondrial DNA from 4,675 species of land mammals and amphibians. The researchers compared changes in cytochrome b, a gene often used to measure genetic diversity within a species, and then mapped the average genetic diversity for all species within roughly 150,000 square-kilometer areas.
For both mammals and amphibians, the tropical Andes and the Amazon have high genetic diversity, shown in dark blue. The same is true for mammal species in subtropical regions of South Africa and amphibian species in eastern North America, Miraldo and colleagues report in the Sept. 30 Science.
Areas affected by people, such as cities and croplands, show lower genetic diversity. The maps are a snapshot and so can’t quantify humans’ impact on this key marker, Miraldo notes. But she hopes the work provides a baseline to monitor how human activity and changes in climate affect the distribution of genetic diversity around the globe.

Genetic variant protects against rash of autoimmune diseases

Tweaking activity of one protein may help protect against 10 autoimmune diseases, a new study suggests. The protein, tyrosine kinase 2 or TYK2, helps regulate how strongly the immune system responds to threats.

Using genetic data from more than 36,000 people with a variety of auto­immune diseases, researchers found that one genetic variant in the gene that codes for the TYK2 protein protects against a wide range of diseases that cause the immune system to attack the body. The variant changes one amino acid in the protein. As a result, the protein’s activity is greatly reduced, but not completely eliminated, researchers report November 2 in Science Translational Medicine.

The researchers say the variant strikes just the right balance between incapacitating the immune system and protecting against overreactions that lead to multiple sclerosis, Crohn’s disease and other autoimmune disorders. New drugs that reduce TYK2’s activity would need similar Goldilocks-like precision. But if such a drug could be developed, it could prove useful against a broad range of diseases.

Ocean plastic emits chemical that may trick seabirds into eating trash

Plastic smells like supper for some seabirds. When the ubiquitous material ends up in the ocean, it gives off a chemical that petrels, prions and shearwaters often use to locate food, researchers report November 9 in Science Advances. That might lead the birds to ingest harmful junk instead of a real meal.

Researchers at the University of California, Davis let small beads of three common plastics linger off the coast of California. After a few weeks, the once-clean plastic accumulated grit, grime and bacteria that gave off an odiferous gas called dimethyl sulfide (SN: 2/20/16, p. 20). Phytoplankton give off the same gas, and certain seabirds use the odor as a cue that dinner is nearby. Birds that rely more heavily on dimethyl sulfide as a beacon for a nearby meal are more likely to ingest plastic than birds that don’t, the team found. Other marine animals that use the cue could also be fooled.

Restless sleep associated with heart rhythm problems

NEW ORLEANS — Chronic sleep problems are associated with atrial fibrillation — a temporary but dangerous disruption of heart rhythm — even among people who don’t suffer from sleep apnea. An analysis of almost 14 million patient records has found that people suffering from insomnia, frequent waking and other sleep issues are more likely than sound sleepers to experience a condition in which the upper chambers of the heart quiver instead of rhythmically beating, allowing blood to briefly stagnate.

“Even if you don’t have sleep apnea, is there something about sleep disruption that puts you at a higher risk of fibrillation,” said Gregory Marcus, a cardiologist at the University of California, San Francisco. “We should put a higher priority on studying sleep itself.” Marcus and Matthew Christensen, from the University of Michigan, presented their results November 14 at the annual meeting of the American Heart Association.
People with atrial fibrillation have double the risk of having a heart attack, and up to five times the risk of stroke. Although the heart condition can be a consequence of aging, its prevalence is rising at about 4 percent per year for reasons that aren’t totally explained. In the United States, about 5 million people currently have the condition, and that number is expected to rise to 12 million by 2030.

A large body of studies has found that sleep apnea, which occurs when a person stops breathing during the night, can lead to atrial fibrillation and a host of other health concerns. Identifying a risk of atrial fibrillation among people with no sleep apnea is unexpected, says Richard Becker, director of the University of Cincinnati Heart, Lung & Vascular Institute, who was not part of the study.

Marcus, Christensen and colleagues analyzed data from three different sources, including the California Healthcare Cost and Utilization Project, a database of almost 14 million patients. They also drew on records from more than 4,600 participants of Health eHeart Study who had filled out a sleep survey, and from the Cardiovascular Health Study, which has tracked more than 5,700 people for more than a decade. Those data allowed the researchers to follow patients over time, tracking which came first — the fibrillation or the sleep issues. The researchers included a variety of sleep disorders, such as insomnia, nighttime waking and shortened periods of rapid eye movement, or REM, sleep.

Among the results: People who frequently woke had a 33 percent greater chance of developing atrial fibrillation in one analysis, and a 47 percent higher chance in another. For the eHeart group, insomnia increased the odds by 17 percent. And among more than 14 million California records studied, insomnia increased the odds of future atrial fibrillation by 36 percent. Analysis of a subgroup undergoing sleep studies showed that less REM sleep also was associated with a higher probability of developing atrial fibrillation.

The study can’t explain why a lack of sleep even with normal breathing might hurt the heart, but the authors hypothesize that the mechanism could be tied to the body’s stress response.

Becker believes that cardiologists should emphasize sleep just as they do diet and exercise for lifestyle management. To workaholic, screen-fixated Americans, “this study sends a powerful message about wellness as a continuum throughout the day and night,” he says. “It offers clinicians and the public a 360-degree view of what is important for good health.”

Now there are two bedbug species in the United States

Bedbugs give me nightmares. Really. I have dreamt of them crawling up my legs while I lie in bed. These are common bedbugs, Cimex lectularius, and after largely disappearing from our beds in the 1950s, they have reemerged in the last few decades to cause havoc in our homes, offices, hotels and even public transportation.

Now there’s a new nightmare. Or rather, another old one. It’s the tropical bedbug, C. hemipterus. Its presence has been confirmed in Florida, and the critters could spread to other southern states, says Brittany Campbell, a graduate student at the University of Florida in Gainesville, who led a new study that tracked down the pests.

Tropical bedbugs can be found in a geographic band of land running between 30° N latitude and 30° S. In the last 20 years or so, they’ve been collected from Tanzania, Sri Lanka, Malaysia, Australia, Rwanda and more. Back in 1938, some were collected in Florida. There were more reports of the species in the following years, but none since the 1940s.

Then, in 2015, researchers at the Insect Identification Laboratory at the University of Florida identified bedbugs sent to the lab from a home in Brevard County, Florida, as tropical bedbugs. To confirm the analysis, researchers went to the home and collected more samples. They were indeed tropical bedbugs, the team reports in the September Florida Entomologist.

The family thought that the bedbugs must have been transported unknowingly into the house by one of the people who lived there. But no one living in the home had traveled outside the state recently, let alone outside the country. This suggests that tropical bedbugs can be found elsewhere in Florida, the team concludes.

Additional evidence comes from the Florida State Collection of Arthropods, which holds two female tropical bedbugs that, according to their label, were collected in Orange County, Florida, on June 11, 1989, from bedding. “Whether this species has been present in Florida and never disappeared, or has been reintroduced and remains in small populations, is not currently known,” the researchers write.

Why hasn’t anyone noticed? Well, people don’t usually send bedbugs to entomologists when they have an infestation, and your average victim isn’t going to notice the difference between the two species. “Both species are very similar,” Campbell says. Not only do they look alike, but they also both “feed on blood, hide in cracks and crevices and have similar lifestyles.” Plus, there’s been little research directly comparing the two species, she notes, so scientists don’t know how infestations might differ.

Just to give us all a few more nightmares, Campbell points out something else: While there’s probably no reason to worry that the creepy critters will spread as climate change warms the globe, she says that there is a potential for the species to move north “because humans provide nice conditions for bedbugs to develop.”